Posts

Showing posts from December, 2025

Advanced Mathematics for Computer Science HNCST409 KTU BTech Honors 2024 Scheme

About Me Syllabus Advanced Mathematics for Computer Science HNCST409 BTech Honors 2024 Model Question Paper and Answers Module- I Number Theory  Introduction Group , Ring and Fields Divisibility Modular Arithmetic and Congruences Equivalence Relation - Congruence Linear Congruences Solving simultaneous congruences- CRT Modular Inverses      Euclidean algorithm      Extended Euclidean algorithm  Euler’s and Fermat’s little theorem  Euler's Totient Function Prime Numbers and Prime-Power Factorization Fermat and Mersenne Prime Primality Testing and Factorization Wilson's Theorem Pseudo Primes and Carmichael Numbers Primality testing       Miller-Rabin      AKS Galois Field (introduction and basic operations) RSA cryptosystem: key generation - encryption/decryption  Hash functions (introduction) Module - II Optimization Convex and Non Convex sets Convex Hull Identifying convex sets Applicatio...

Equivalence Relation

  What Is an Equivalence Relation? Let A A  be a set. A relation \sim ∼ on A A  is called an equivalence relation if it satisfies three properties : 1. Reflexive For every a ∈ A a \in A , a ∼ a a \sim a 2. Symmetric For all a , b ∈ A a, b \in A , a ∼ b ⇒ b ∼ a a \sim b \Rightarrow b \sim a 3. Transitive For all a , b , c ∈ A a, b, c \in A , a ∼ b  and  b ∼ c ⇒ a ∼ c a \sim b \text{ and } b \sim c \Rightarrow a \sim c Why Equivalence Relations Are Important Equivalence relations allow us to: Group elements into equivalence classes Treat different objects as “essentially the same” Build structures like modular arithmetic , finite fields , and quotient sets Congruence Modulo n n n Let n ∈ Z , n > 0 n \in \mathbb{Z}, n > 0 . For integers a a  and b b , we say: a ≡ b ( m o d n ) a \equiv b \pmod{n} if and only if: n ∣ ( a − b ) n \mid (a - b) That is, a − b a - b  is divisible by n n . Claim Congruence modulo n n n is...